\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

 B.E. (C.S.E.) III Year II-Semester Main Examinations, May-2017Compiler Construction
Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (10×2 $=20$ Marks)

1. Define interpretation and distinguish between interpreters and compilers.
2. Design grammar for the following language: The set of all strings of 0 s and 1 s with an equal number of 0 s and 1 s .
3. Differentiate top down and bottom up parsers
4. Eliminate immediate left recursion for the following grammar:

$$
\begin{aligned}
& \mathrm{E}->\mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T}->T^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F}->(\mathrm{E}) \mid \mathrm{id}
\end{aligned}
$$

5. What are the advantages of generating intermediate code vis-a-vis generating target program itself?
6. Define widening type conversion and narrowing type conversion with an example.
7. What is a garbage collector?
8. Explain various issues with stack allocation.
9. Distinguish between Abstract Syntax Tree and Control Flow Graph.
10. What is Code Motion optimization?

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

11. a) What is error recovery? Discuss various error recovery methods used in lexical analysis.
b) Explain Lex specification with an example.
12. a) Consider the following grammar

$$
\begin{aligned}
& S->A S \mid b \\
& A->S A \mid a .
\end{aligned}
$$

Construct an SLR parsing table for the same.
b) Write steps to find first and follow and construct first set and follow set for the following grammar:

$$
\begin{aligned}
& \mathrm{S} \rightarrow 0 \mid \mathrm{A} \\
& \mathrm{~A} \rightarrow \mathrm{AB} \\
& \mathrm{~B} \rightarrow 1
\end{aligned}
$$

13. a) Construct different types of three address codes notations for the following expression.

$$
(a+b) *(c / d)+e
$$

b) Write the SDT for if-then-else construct.
14. a) Distinguish static and dynamic storage allocation and explain heap storage allocation.
b) Show the symbol table for the following C program:

$$
\begin{array}{r}
\text { int } w, x, y, z ; \\
\text { int } \mathrm{i}=1 ; \\
\text { int } \mathrm{j}=2 ; \\
\{ \\
\text { int } \mathrm{i}=3 ; \\
\mathrm{j}=4 ; \\
\mathrm{w}=\mathrm{i}+\mathrm{j} ; \\
\} \\
\mathrm{x}=\mathrm{i}+\mathrm{j} ; \\
\{ \\
\text { int } \mathrm{j}=5 ; \\
\mathrm{y}=\mathrm{i}+\mathrm{j} ; \\
\} \\
\mathrm{z}=\mathrm{i}+\mathrm{j} ;
\end{array}
$$

15. a) What is the DAG of an expression tree? What are its uses?
b) Translate the following program into intermediate representation and construct the corresponding expression DAG for it.

$$
\begin{aligned}
\mathrm{d} & :=\mathrm{b} * \mathrm{c} \\
\mathrm{e} & =\mathrm{a}+\mathrm{b} \\
\mathrm{~b} & :=\mathrm{b} * \mathrm{c} \\
\mathrm{a} & :=\mathrm{e}-\mathrm{d}
\end{aligned}
$$

16. a) Explain how input buffering happens in lexical analysis.
b) Write CLR table for the following grammar:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~L} \\
& \mathrm{~L} \rightarrow \mathrm{~L} \mathrm{~b} \mid \mathrm{A} \\
& \mathrm{~A} \rightarrow \mathrm{a}
\end{aligned}
$$

17. Answer any two of the following:
a) Dangling else problem in parsing of imperative languages.
b) Instruction scheduling: the complexity and an algorithm for the same.
c) Register allocation using graph colouring.
